Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029530

RESUMO

A long neck is an evolutionary innovation convergently appearing in multiple tetrapod lineages, including groups of plesiosaurs, non-archosauriform archosauromorphs, turtles, sauropodomorphs, birds, and mammals. Among all tetrapods both extant and extinct, two Triassic archosauromorphs, Tanystropheus and Dinocephalosaurus, have necks that are particularly elongated relative to the lengths of their trunks. However, the evolutionary history of such hyper-elongated necks in these two archosauromorph clades remains unknown, partially because known close relatives such as Macrocnemus and Pectodens possess only moderately elongated necks. Here, we describe a newly discovered early diverging archosauromorph, Gracilicollum latens gen. et sp. nov., based on a specimen comprising a partial neck and an incompletely preserved skull. The long neck is composed of at least 18 cervical vertebrae. The dentition suggests that this new taxon most likely represents an aquatic piscivore, similar to Dinocephalosaurus and Tanystropheus hydroides. Despite possessing a high number of cervical vertebrae, Gracilicollum gen. nov. is recovered as a tanystropheid in an evolutionary grade between Macrocnemus and Tanystropheus rather than as a close relative of Dinocephalosaurus, a result that is primarily attributable to the presence of palatal teeth and the anatomy of the cervical vertebrae in Gracilicollum gen. nov. Considering the information provided by the new specimen, we provide a detailed discussion of the cervical evolution in dinocephalosaurids and tanystropheids, which is shown to be highly complex and mosaic in nature.

2.
PeerJ ; 8: e10299, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240633

RESUMO

The postcranial morphology of the extremely long-necked Tanystropheus hydroides is well-known, but observations of skull morphology were previously limited due to compression of the known specimens. Here we provide a detailed description of the skull of PIMUZ T 2790, including a partial endocast and endosseous labyrinth, based on synchrotron microtomographic data, and compare its morphology to that of other early Archosauromorpha. In many features, such as the wide and flattened snout and the configuration of the temporal and palatal regions, Tanystropheus hydroides differs strongly from other early archosauromorphs. The braincase possesses a combination of derived archosaur traits, such as the presence of a laterosphenoid and the ossification of the lateral wall of the braincase, but also differs from archosauriforms in the morphology of the ventral ramus of the opisthotic, the horizontal orientation of the parabasisphenoid, and the absence of a clearly defined crista prootica. Tanystropheus hydroides was a ram-feeder that likely caught its prey through a laterally directed snapping bite. Although the cranial morphology of other archosauromorph lineages is relatively well-represented, the skulls of most tanystropheid taxa remain poorly understood due to compressed and often fragmentary specimens. The recent descriptions of the skulls of Macrocnemus bassanii and now Tanystropheus hydroides reveal a large cranial disparity in the clade, reflecting wide ecological diversity, and highlighting the importance of non-archosauriform Archosauromorpha to both terrestrial and aquatic ecosystems during the Triassic.

3.
iScience ; 23(9): 101347, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32822565

RESUMO

Air-breathing marine predators have been essential components of the marine ecosystem since the Triassic. Many of them are considered the apex predators but without direct evidence-dietary inferences are usually based on circumstantial evidence, such as tooth shape. Here we report a fossil that likely represents the oldest evidence for predation on megafauna, i.e., animals equal to or larger than humans, by marine tetrapods-a thalattosaur (∼4 m in total length) in the stomach of a Middle Triassic ichthyosaur (∼5 m). The predator has grasping teeth yet swallowed the body trunk of the prey in one to several pieces. There were many more Mesozoic marine reptiles with similar grasping teeth, so megafaunal predation was likely more widespread than presently conceived. Megafaunal predation probably started nearly simultaneously in multiple lineages of marine reptiles in the Illyrian (about 242-243 million years ago).

4.
Curr Biol ; 30(19): 3889-3895.e2, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763168

RESUMO

Tanystropheus longobardicus is one of the most remarkable and iconic Triassic reptiles. Mainly known from the Middle Triassic conservation Lagerstätte of Monte San Giorgio on the Swiss-Italian border, it is characterized by an extraordinarily long and stiffened neck that is almost three times the length of the trunk, despite being composed of only 13 hyper-elongate cervical vertebrae [1-8]. Its paleobiology remains contentious, with both aquatic and terrestrial lifestyles having been proposed [1, 9-12]. Among the Tanystropheus specimens, a small morphotype bearing tricuspid teeth and a large morphotype bearing single-cusped teeth can be recognized, historically considered as juveniles and adults of the same species [4]. Using high-resolution synchrotron radiation microtomography (SRµCT), we three-dimensionally reconstruct a virtually complete but disarticulated skull of the large morphotype, including its endocast and inner ear, to reveal its morphology for the first time. The skull is specialized toward hunting in an aquatic environment, indicated by the placement of the nares on the top of the snout and a "fish-trap"-type dentition. The SRµCT data and limb bone paleohistology reveal that the large morphotype represents a separate species (Tanystropheus hydroides sp. nov.). Skeletochronology of the small morphotype specimens indicates that they are skeletally mature despite their small size, thus representing adult individuals of Tanystropheus longobardicus. The co-occurrence of these two species of disparate size ranges and dentitions provides strong evidence for niche partitioning, highlighting the surprising versatility of the Tanystropheus bauplan and the complexity of Middle Triassic nearshore ecosystems.


Assuntos
Dinossauros/anatomia & histologia , Pescoço/anatomia & histologia , Crânio/anatomia & histologia , Adaptação Biológica/genética , Adaptação Biológica/fisiologia , Animais , Evolução Biológica , Orelha Interna/anatomia & histologia , Ecossistema , Fósseis , Filogenia , Répteis/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Dente/anatomia & histologia
5.
Sci Rep ; 10(1): 7798, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385319

RESUMO

Marine tetrapods quickly diversified and were established as marine top predators after the end-Permian Mass extinction (EPME). Ichthyosaurs were the forerunner of this rapid radiation but the main drivers of the diversification are poorly understood. Cartorhynchus lenticarpus is a basal ichthyosauriform with the least degree of aquatic adaptation, holding a key to identifying such a driver. The unique specimen appeared edentulous based on what was exposed but a CT scanning revealed that the species indeed had rounded teeth that are nearly perpendicular to the jaw rami, and thus completely concealed in lateral view. There are three dental rows per jaw ramus, and the root lacks infoldings of the dentine typical of ichthyopterygians. The well-developed and worn molariform dentition with three tooth rows supports the previous inference that the specimen is not of a juvenile. The premaxilla and the corresponding part of the dentary are edentulous. Molariform dentition evolved three to five times independently within Ichthyosauriformes in the Early and Middle Triassic. Convergent exploitation of hard-shelled invertebrates by different subclades of ichthyosauriforms likely fueled the rapid taxonomic diversification of the group after EPME.


Assuntos
Evolução Biológica , Dentição , Extinção Biológica , Fósseis , Paleontologia , Pleurodeles , Animais , Pleurodeles/anatomia & histologia , Dente/anatomia & histologia , Dente/diagnóstico por imagem
6.
J Hist Biol ; 53(2): 217-230, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32328909

RESUMO

The concept that renders morphology a tool for phylogeny reconstruction is homology. The concept of homology is rooted in pre-evolutionary idealistic morphology. The claim that the goal of idealistic morphology was the seriability of form may sound paradoxical given that this discipline proceeded within a framework of strictly delimited types. But the types only demarcate where seriability starts and where it comes to an end. Carl Gegenbaur's (Grundzüge der vergleichenden Anatomie, Wilhelm Engelmann, Leipzig, 1859) was recognized as a milestone in idealistic morphology. A comparison with the second edition of 1870 illustrates Gegenbaur's turn to evolutionary morphology. The methodology remained the same-seriability of form-but the series was no longer merely descriptive or conceptual but now a historical, evolutionary one. Gegenbaur emphasized that seriability of form was possible not only between species of the same type, but also between parts (organs) of organisms of the same type. Pursuing this project, he found that different parts of organisms evolve at different rates, resulting in an incongruence between the series of parts (organs) relative to the series of species under comparison. This incongrence was called chevauchement des spécialisations by Louis Dollo, Spezialisationskreuzungen by Othenio Abel, and heterobathmy of characters by Armen Takhtajan. Willi Hennig, the founder of modern methods in phylogenetic systematics, discovered that the heterobathmy of characters was a precondition for the establishment of the phylogenetic relationships based on shared derived characters. The result was a replacement of the search for ancestors by a search for relative degrees of phylogenetic relationships (sister-group relationships).

7.
PeerJ ; 7: e7561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31565558

RESUMO

A new species of ichthyosauriform is recognized based on 20 specimens, including nearly complete skeletons, and named Chaohusaurus brevifemoralis. A part of the specimens was previously identified as Chaohusaurus chaoxianensis and is herein reassigned to the new species. The new species differs from existing species of Chaohusaurus in a suite of features, such as the bifurcation of the caudal peak neural spine and a short femur relative to trunk length. The specimens include both complete and partially disarticulated skulls, allowing rigorous scrutiny of cranial sutures. For example, the squamosal does not participate in the margin of the upper temporal fenestra despite previous interpretations. Also, the frontal unequivocally forms a part of the anterior margin of the upper temporal fenestra, forming the most medial part of the anterior terrace. The skull of the holotype largely retains three-dimensionality with the scleral rings approximately in situ, revealing that the eyeball was uncovered in two different directions, that is, laterally and slightly dorsally through the main part of the orbit, and dorsally through the medial extension of the orbit into the skull roof. This skull construction is likely a basal feature of Ichthyosauromorpha. Phylogenetic analyses place the new species as a sister taxon of Chaohusaurus chaoxianensis.

8.
Theory Biosci ; 138(1): 147-157, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30811026

RESUMO

Biological individuality was a hotly debated concept in nineteenth-century German biology, both in botany and in zoology. Much discussion centered on a comparison of higher plants with colonial organisms that are subject to polymorphism and exhibit division of labor among their parts. Building on the work of Matthias Jakob Schleiden, Johannes Müller, Rudolf Leuckart, and especially the botanist Alexander Braun, Haeckel in his writings continued to refine his theory of relative individuality. Haeckel recognized three kinds of individuality: physiological, morphological, and genealogical, the latter two hierarchically structured. These distinctions allowed him to embed in his theory of relative (biological) individuality the threefold parallelism of ontogeny, phylogeny, and classification. For Haeckel, this threefold parallelism provided the strongest proof for Darwin's theory of descent with modification.


Assuntos
Biologia/história , Zoologia/história , Animais , Evolução Biológica , Botânica/história , História do Século XIX , História do Século XX , Modelos Biológicos
9.
Sci Rep ; 9(1): 152, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679783

RESUMO

The end-Permian mass extinction (EPME) led to reorganization of marine predatory communities, through introduction of air-breathing top predators, such as marine reptiles. We report two new specimens of one such marine reptile, Eretmorhipis carrolldongi, from the Lower Triassic of Hubei, China, revealing superficial convergence with the modern duckbilled platypus (Ornithorhynchus anatinus), a monotreme mammal. Apparent similarities include exceptionally small eyes relative to the body, snout ending with crura with a large internasal space, housing a bone reminiscent of os paradoxum, a mysterious bone of platypus, and external grooves along the crura. The specimens also have a rigid body with triangular bony blades protruding from the back. The small eyes likely played reduced roles during foraging in this animal, as with extant amniotes (group containing mammals and reptiles) with similarly small eyes. Mechanoreceptors on the bill of the animal were probably used for prey detection instead. The specimens represent the oldest record of amniotes with extremely reduced visual capacity, utilizing non-visual cues for prey detection. The discovery reveals that the ecological diversity of marine predators was already high in the late Early Triassic, and challenges the traditional view that the ecological diversification of marine reptiles was delayed following the EPME.


Assuntos
Evolução Biológica , Olho/anatomia & histologia , Mecanorreceptores/ultraestrutura , Ornitorrinco/anatomia & histologia , Répteis/anatomia & histologia , Animais , China , Ecossistema , Fósseis , Sedimentos Geológicos
10.
Sci Rep ; 8(1): 14978, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297861

RESUMO

The Early Triassic Chaohu Fauna from Anhui Province, China, contains the oldest record of Mesozoic marine reptiles, such as Cartorhynchus and Sclerocormus. Most specimens from the fauna belong to the ichthyosauriform Chaohusaurus, more specifically resembling C. chaoxianensis. However, a wide range of morphological variation exists within about 40 skeletons that have been prepared, likely reflecting mixed signals from both sexual and taxonomic differences. We test whether the sexual and taxonomic signals are separable based on quantification, aided by the knowledge of sexual dimorphism in extant marine tetrapods. There are two different suites of dimorphism that divide the specimens differently from each other yet consistently within each suite, resulting in four morphotypes in combination, likely representing two sexes of two taxa. Presumed males have larger 'organ of prehension' sensu Darwin, specifically limbs in the present case, for a given body length. This sexing criterion is supported by the only specimen of a gravid female, which belongs to the morphotype with short limbs. Males also have larger skulls for the trunk length compared to females. This study demonstrates that sexual and taxonomic signals are separable in fossil reptiles, with a sufficient sample size and careful analyses.


Assuntos
Fósseis/anatomia & histologia , Répteis/anatomia & histologia , Caracteres Sexuais , Animais , Evolução Biológica , Tamanho Corporal , Feminino , Masculino , Tamanho do Órgão , Répteis/classificação , Répteis/fisiologia
11.
Nature ; 560(7719): 476-479, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30135526

RESUMO

The early evolution of turtles continues to be a contentious issue in vertebrate palaeontology. Recent reports have suggested that they are diapsids1-6, but the position of turtles within Diapsida is controversial7-12 and the sequence of acquisition of turtle synapomorphies remains unclear1-3. Here we describe a Triassic turtle from China that has a mixture of derived characters and plesiomorphic features. To our knowledge, it represents the earliest known stem turtle with an edentulous beak and a rigid puboischiadic plate. The discovery of this new form reveals a complex early history of turtles.


Assuntos
Bico/anatomia & histologia , Filogenia , Tartarugas/anatomia & histologia , Tartarugas/classificação , Animais , China , Fósseis
12.
Sci Adv ; 2(5): e1501659, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386529

RESUMO

Newly discovered fossils of the Middle Triassic reptile Atopodentatus unicus call for a radical reassessment of its feeding behavior. The skull displays a pronounced hammerhead shape that was hitherto unknown. The long, straight anterior edges of both upper and lower jaws were lined with batteries of chisel-shaped teeth, whereas the remaining parts of the jaw rami supported densely packed needle-shaped teeth forming a mesh. The evidence indicates a novel feeding mechanism wherein the chisel-shaped teeth were used to scrape algae off the substrate, and the plant matter that was loosened was filtered from the water column through the more posteriorly positioned tooth mesh. This is the oldest record of herbivory within marine reptiles.


Assuntos
Fósseis , Herbivoria , Arcada Osseodentária/anatomia & histologia , Répteis/anatomia & histologia , Répteis/fisiologia , Animais , Paleontologia
13.
Sci Rep ; 6: 26232, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27211319

RESUMO

Contrary to the fast radiation of most metazoans after the end-Permian mass extinction, it is believed that early marine reptiles evolved slowly during the same time interval. However, emerging discoveries of Early Triassic marine reptiles are questioning this traditional view. Here we present an aberrant basal ichthyosauriform with a hitherto unknown body design that suggests a fast radiation of early marine reptiles. The new species is larger than coeval marine reptiles and has an extremely small head and a long tail without a fluke. Its heavily-built body bears flattened and overlapping gastral elements reminiscent of hupehsuchians. A phylogenetic analysis places the new species at the base of ichthyosauriforms, as the sister taxon of Cartorhynchus with which it shares a short snout with rostrally extended nasals. It now appears that ichthyosauriforms evolved rapidly within the first one million years of their evolution, in the Spathian (Early Triassic), and their true diversity has yet to be fully uncovered. Early ichthyosauromorphs quickly became extinct near the Early-Middle Triassic boundary, during the last large environmental perturbation after the end-Permian extinction involving redox fluctuations, sea level changes and volcanism. Marine reptile faunas shifted from ichthyosauromorph-dominated to sauropterygian-dominated composition after the perturbation.


Assuntos
Organismos Aquáticos/classificação , Evolução Biológica , Fósseis , Filogenia , Répteis/anatomia & histologia , Répteis/classificação , Animais
15.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26378218

RESUMO

The evolutionary history of sexual selection in the geologic past is poorly documented based on quantification, largely because of difficulty in sexing fossil specimens. Even such essential ecological parameters as adult sex ratio (ASR) and sexual size dimorphism (SSD) are rarely quantified, despite their implications for sexual selection. To enable their estimation, we propose a method for unbiased sex identification based on sexual shape dimorphism, using size-independent principal components of phenotypic data. We applied the method to test sexual selection in Keichousaurus hui, a Middle Triassic (about 237 Ma) sauropterygian with an unusually large sample size for a fossil reptile. Keichousaurus hui exhibited SSD biased towards males, as in the majority of extant reptiles, to a minor degree (sexual dimorphism index -0.087). The ASR is about 60% females, suggesting higher mortality of males over females. Both values support sexual selection of males in this species. The method may be applied to other fossil species. We also used the Gompertz allometric equation to study the sexual shape dimorphism of K. hui and found that two sexes had largely homogeneous phenotypes at birth except in the humeral width, contrary to previous suggestions derived from the standard allometric equation.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Caracteres Sexuais , Animais , Tamanho Corporal , Feminino , Úmero/anatomia & histologia , Masculino , Razão de Masculinidade
16.
J Exp Zool B Mol Dev Evol ; 324(7): 578-87, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26175214

RESUMO

The relation of homology is generally characterized as an identity relation, or alternatively as a correspondence relation, both of which are transitive. We use the example of the ontogenetic development and evolutionary origin of the gnathostome jaw to discuss identity and transitivity of the homology relation under the transformationist and emergentist paradigms respectively. Token identity and consequent transitivity of homology relations are shown to be requirements that are too strong to allow the origin of genuine evolutionary novelties. We consequently introduce the concept of compositional identity that is grounded in relations prevailing between parts (organs and organ systems) of a whole (organism). We recognize an ontogenetic identity of parts within a whole throughout the sequence of successive developmental stages of those parts: this is an intra-organismal character identity maintained throughout developmental trajectory. Correspondingly, we recognize a phylogenetic identity of homologous parts within two or more organisms of different species: this is an inter-species character identity maintained throughout evolutionary trajectory. These different dimensions of character identity--ontogenetic (through development) and phylogenetic (via shared evolutionary history)--break the transitivity of homology relations. Under the transformationist paradigm, the relation of homology reigns over the entire character (-state) transformation series, and thus encompasses the plesiomorphic as well as the apomorphic condition of form. In contrast, genuine evolutionary novelties originate not through transformation of ancestral characters (-states), but instead through deviating developmental trajectories that result in alternate characters. Under the emergentist paradigm, homology is thus synonymous with synapomorphy.


Assuntos
Evolução Biológica , Filogenia , Vertebrados/anatomia & histologia , Animais , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/embriologia , Vertebrados/embriologia , Vertebrados/crescimento & desenvolvimento
17.
PLoS One ; 10(5): e0126024, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26017585

RESUMO

A new specimen of an enigmatic hupehsuchian genus is reported. The genus was first recognized by Robert L. Carroll and Zhi-ming Dong in 1991, who refrained from naming it because of the poor quality of the only specimen known at the time. After more than two decades, we finally report a second specimen of this genus, which remained unprepared until recently. The new specimen preserves most of the skeleton except the skull, allowing us to erect a new genus and species, Eretmorhipis carrolldongi. The new species shares many characters with Parahupehsuchus longus, including the strange axial skeleton that forms a bony body tube. However, the body tube is short in the new species, being limited to the pectoral region. The vertebral count and limb morphology considerably differ between the new species and P. longus. The forelimb of E. carrolldongi is markedly larger than its hind limb as in Hupehsuchus nanchangensis but unlike in P. longus. The new species is unique among hupehsuchians in a list of features. It has manual and pedal digits that spread radially, forming manus and pes that are almost as wide as long. The third-layer elements of the dermal armor are unusually large, spanning four vertebral segments, yet there are substantial gaps among them. With the addition of the unique paddle, it is now clear that Hupehsuchia had diverse forelimb morphologies spanning from paddles to flippers, unlike ichthyopterygians that were taxonomically more diverse yet only had flippers.


Assuntos
Fósseis/anatomia & histologia , Répteis/anatomia & histologia , Animais , China , Membro Anterior/anatomia & histologia , Membro Posterior/anatomia & histologia , Filogenia , Costelas/anatomia & histologia , Coluna Vertebral/anatomia & histologia
18.
Sci Rep ; 5: 8900, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25754468

RESUMO

Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.


Assuntos
Organismos Aquáticos , Evolução Biológica , Ecossistema , Répteis , Adaptação Fisiológica , Animais , Comportamento Alimentar , Fósseis , Paleontologia , Filogenia , Comportamento Predatório , Baleias
19.
Nature ; 517(7535): 485-8, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25383536

RESUMO

The incompleteness of the fossil record obscures the origin of many of the more derived clades of vertebrates. One such group is the Ichthyopterygia, a clade of obligatory marine reptiles that appeared in the Early Triassic epoch, without any known intermediates. Here we describe a basal ichthyosauriform from the upper Lower Triassic (about 248 million years ago) of China, whose primitive skeleton indicates possible amphibious habits. It is smaller than ichthyopterygians and had unusually large flippers that probably allowed limited terrestrial locomotion. It also retained characteristics of terrestrial diapsid reptiles, including a short snout and body trunk. Unlike more-derived ichthyosauriforms, it was probably a suction feeder. The new species supports the sister-group relationships between ichthyosauriforms and Hupehsuchia, the two forming the Ichthyosauromorpha. Basal ichthyosauromorphs are known exclusively from south China, suggesting that the clade originated in the region, which formed a warm and humid tropical archipelago in the Early Triassic. The oldest unequivocal record of a sauropterygian is also from the same stratigraphic unit of the region.


Assuntos
Estruturas Animais/anatomia & histologia , Filogenia , Répteis/anatomia & histologia , Répteis/classificação , Animais , China , Fósseis , Crânio/anatomia & histologia
20.
PLoS One ; 9(12): e115244, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25517113

RESUMO

Hupehsuchia is a group of enigmatic Triassic marine reptiles that is known exclusively from two counties in Hubei Province, China. One of the common features of the group was a modestly long neck with nine to ten cervical vertebrae. We report a new species of Hupehsuchia, Eohupehsuchus brevicollis gen. et sp. nov., which for the first time shows a short neck in this group, with six cervicals. The configuration of the skull roof in Eohupehsuchus is also unique among Hupehsuchia, with narrow frontals and posteriorly shifted parietals, warranting recognition of a new species. The taxon superficially resembles Nanchangosaurus in retaining hupehsuchian plesiomorphies, such as low neural spines and small body size. However, its limbs are well-developed, unlike in Nanchangosaurus, although the latter genus is marginally larger in body length. Thus, the individual is unlikely to be immature. Also, Eohupehsuchus shares a suite of synapomorphies with Hupehsuchus, including the second and third layers of dermal ossicles above the dorsal neural spines. A phylogenetic analysis suggests that the new species is not the most basal hupehsuchian despite its short neck, and instead forms the sister taxon of Hupehsuchidae. Until recently, Hupehsuchia contained only two monotypic genera. Now there are at least four genera among Hupehsuchia, and the undescribed diversity is even higher. The left forelimb of the only specimen is incomplete, ending with broken phalanges distally. The breakage could only have occurred pre-burial. The individual may have been attacked by a predator and escaped, given that scavenging is unlikely.


Assuntos
Adaptação Fisiológica , Vértebras Cervicais/anatomia & histologia , Fósseis , Répteis/anatomia & histologia , Répteis/classificação , Crânio/anatomia & histologia , Animais , Tamanho Corporal , Vértebras Cervicais/fisiologia , China , Filogenia , Répteis/fisiologia , Crânio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...